Data-Driven Optimization for Machine Learning Applications

DURATION:
summer semester
ID:
200135
CREDIT:
5

INSTRUCTORS:

Dr.-Ing. habil. Pu Li
Professor - Head of Process Optimization Group
Dr. rer. nat. habil. Abebe Geletu W. Selassie
Professor - German Research Chair at AIMS Rwanda

Address

TU Ilmenau   View map

Categories

Master , Study

Content:

1. Introduction – Motivation, Data-driven versus Model-driven appraoch, importance of data-driven optimization; overview of optimization problems arising in machine learning applications;

2. Preiminaries – linear algebra; convex sets convex functions; gradient, sub-gradient, hessian matrix;

3. Programming basics (Python, R, Matlab); data loading and preprocessing;

4. Unconstrained optimization for machine learning: regularization-meaning and relevance; regression problems; neural networks and back-propagation of errors; optimization methods for deep learning ;

5. Uncostrained Optimiztion Algorithms; 5A: First-order algorithms – gradient descent, accelerated gradient descent, stochastic gradient descent, conjugate gradient methods, coordinate descent; R and Python implementations; sub-gradient methods (optional); 5B. Second-order algorithms: The Newton Method; quasi-Newton methods; LBFGS; R and Python implementations;

6. Constrained Optimization Methods for Machine Learning – the interior point method; face-recongintion with supprot vector machine using Python, Scikit-Learn and OpenCV ;Matrix factorization methods for pattern recognition- SVD, PCA, non-negative matrix factorization (NMF); Matlab and Python Scikit-Learn implementations; Proximal-Point Algorithms: proximal gradient methods; alternating direction of multupliers (ADMM);

7. Bayesian Optimization methods for Machine Learning;

8. Optimization algorithms in Deep Learning Tools TensorFlow, Kerays, pyTorch

Research

Joint Projects

Engage

Development in Africa

Commitment

Joint Cooperation

Innovation

Shared Ideas

CONTACT | TU Ilmenau

Address:
Technische Universität Ilmenau
Fakultät für Informatik und Automatisierung
Institut für Automatisierungs- und Systemtechnik
Fachgebiet Prozessoptimierung
Helmholtzplatz 5 (Zusebau)
98693 Ilmenau

Web:
https://www.tu-ilmenau.de/prozessoptimierung/

E-Mail:
pu.li@tu-ilmenau.de

CONTACT | AIMS Rwanda

Address:
AIMS Rwanda Centre
Dr. D.Sc. Abebe Geletu
German Research Chair, AIMS Rwanda
Sector Remera
KN 3 Kigali
Rwanda

Web:
https://aims.ac.rw/researcher/dr-d-sc-abebe-geletu/

E-Mail:
abebe.geletu@aims.ac.rw

TOP